Solución cálculo de la fracción molar de ambos componentes






descargar 30.39 Kb.
títuloSolución cálculo de la fracción molar de ambos componentes
fecha de publicación20.03.2017
tamaño30.39 Kb.
tipoSolución
ley.exam-10.com > Ley > Solución

PROBLEMAS DE DISOLUCIONES Y PROPIEDADES COLIGATIVAS



1.- Una disolución acuosa de ácido nítrico concentrado contiene 68,1% en peso de dicho ácido y su densidad es de 1,405 g/cc a 20 ºC. Calcular:

a) las fracciones molares del ácido y del agua en la disolución b) la molalidad del ácido c) la molaridad del ácido en la disolución a esa temperatura

SOLUCIÓN


  1. Cálculo de la fracción molar de ambos componentes

Por definición :

Siendo y

Si el PM (HNO3) = 63 g/mol y el PM (H2O) = 18 g/mol el número de moles de cada especie en 100 g de disolución será:





Aplicando las ecuaciones de las fracciones molares de ambos componentes:




Respuesta:

  1. Cálculo de la molalidad del ácido

Por definición:

Aplicando la ecuación a 100 g de disolución podremos utilizar el número de moles de ácido calculado en el apartado a), de forma que:



Respuesta: m = 33,887 mol/kg

  1. Cálculo de la molaridad del ácido:

Por definición:

Tomado como referencia 100 g de disolución y teniendo en cuenta la densidad podremos calcular el volumen de la disolución a 20 ºC.



Una vez conocido el volumen de la disolución en litros se substituye en la ecuación de la molaridad, utilizando el dato de números de moles calculado en el apartado a).



Respuesta: M = 15,188 mol/L
2.- Un frasco de ácido sulfúrico comercial (disolución acuosa concentrada) contiene 96% en peso de ácido y su densidad es de 1,836 g/mL a 25 ºC. Calcular el volumen de dicho ácido comercial necesario para preparar:

a) 500 mL de una disolución 0,5 M b) 500 mL de una disolución al 10 g/L.

SOLUCIÓN

  1. Según la definición de la molaridad:



Según este resultado es necesarios extraer del frasco la cantidad necesaria de disolución de forma que contenga estos 0,250 moles.

Si la masa molar del H2SO4 = 98 g/mol

Se necesitan:

Como la disolución contiene 96% en peso de ácido y su densidad es 1,836 g/mL



Respuesta: Volumen = 13,90 mL


  1. Para preparar 500 mL de una disolución con una concentración del ácido de 10 g/L



El volumen de disolución que es necesario extraer del frasco para que contenga los 5 g de ácido que se necesitan.



Respuesta: Volumen = 2,84 mL
3.- Hallar las masas de agua y de sulfato de cobre (II) pentahidratado necesarias para preparar 1 litro de disolución que contiene 8% en peso de sal anhidra. La densidad es 1,084 g/mL.

SOLUCIÓN

Hay sales como el sulfato de cobre (II) que poseen la capacidad de retener moléculas de agua que forman parte del cristal sólido, se denomina agua de cristalización y es necesario tenerla en cuenta en la fórmula y en el cálculo del peso molecular de la denominada sal hidratada.

En este caso la fórmula de la sal pentahidratada sería: CuSO4.5H2O

Cuando la sal se disuelve se deshace el edificio cristalino y el agua de cristalización pasa a engrosar las moléculas de disolvente. La sal sin agua de hidratación se denomina anhidra.

Para preparar 1 litro de disolución con 8% en peso de CuSO4 y densidad 1,084 g/mL.


Es necesario determinar la cantidad de sal pentahidratada que debemos pesar para que contenga los 86,72 g de sal anhidra necesarios.

Podremos determinar por ejemplo el % en peso de sal anhidra que contiene la sal hidratada:

La masa molar de la sal hidratada CuSO4.5H20 =159,54 + 90(agua)=249,54


Por cada 100 g de sal hidratada que pesemos sólo 63,88 g son de sal anhidra el resto es el agua. Por tanto, si se necesitan 86,72 g de sal anhidra tendremos que pesar:



Para determinar la cantidad de agua que debemos añadir para preparar 1 litro de disolución, es necesario utilizar la densidad para conocer lo que pesa.



1084 g disolución – 135,75 g sal hidratada = 948,25 g de agua

Respuesta: 135,75 de sal hidratada y 948,25 g de agua
4.- El anticongelante es utilizado en motores de combustión interna y muchas otras aplicaciones de transferencia de calor, tales como los enfriadores y calentadores de agua. El propósito del anticongelante es evitar que una caja rígida sufra estrés físico y defor-mación catastrófica debido a la expansión que se produce cuando el agua se convierte en hielo. La mayoría de anticongelantes son compuestos químicos que se añaden al agua para reducir el punto de congelación de la mezcla por debajo de la temperatura más baja a la que probablemente el sistema puede ser expuesto. En climas cálidos, estos compuestos no sólo producen una disminución en el punto de congelación en el invierno cuando se mezcla con agua, sino que aumentan la temperatura de ebullición del agua. Estas sustancias se refiere correctamente como tanto anticongelante y "antiebullición" cuando se usa para ambas propiedades.

Uno de los compuestos químicos más utilizados para esta función es el propilenglicol (1,2-propanodiol). Calcular que volumen de propilenglicol se necesitará añadir por litro de agua para preparar un anticongelante que permanezca líquido hasta una temperatu-ra de -10 ºC. ¿A que temperatura empezará a hervir el agua del anticongelante prepa-rado?

DATOS: densidad del propilen glicol = 1,0361 g/mL; Kc del agua = 1,86 ºC/molal; Keb = 0,51 ºC/molal. Pat (C) = 12 ; Pat (O) = 16
SOLUCIÓN
Suponiendo que la disolución anticongelante que vamos a preparar presenta un comportamiento ideal, las expresiones del descenso en el punto de congelación (crioscópico) y del aumento en la temperatura de ebullición son:

Descenso crioscópico:

Aumento ebulloscópico:

Siendo Kc y Kb constantes características del disolvente (agua en este caso) y m la concen-tración molal del aditivo en el agua.

Teniendo en cuenta que la temperatura de congelación normal del agua es 0 ºC, si se desea que ésta no congele hasta –10 ºC, el descenso crioscópìco debe ser 10 ºC. Si se aplica en la ecuación correspondiente:



Este resultado indica que será necesario añadir 5,376 moles de propilenglicol por kg de agua.

La masa molar del propilenglicol CH3CHOHCH2OH es 76 g/mol



Para calcular la temperatura de ebullición de este anticongelante:



Si la temperatura de ebullición normal del agua es 100 ºC, quiere decir que la temperatura de ebullición del anticongelante preparado será:


Respuestas: 394,34 mL de propilenglicol y la Teb = 102,74ºC
5.- Los hematíes de la sangre a la temperatura corporal de 37 ºC son isotónicos con una disolución al 0,91% de cloruro de sodio cuya densidad es 1 g/mL. El grado de disocia-ción aparente del cloruro de sodio es del 90%. Hallar:

a) La presión osmótica de la sangre b) La temperatura de congelación

c) El volumen de agua que hay que añadir a 100 g de la primera disolución para que la presión osmótica sea 5 atm.

SOLUCIÓN

a) Si los hematíes de la sangre son isotónicos con la disolución del enunciado indica que ambas tienen la misma presión osmótica.

Para calcular la presión osmótica de la disolución diluida de NaCl puede utilizarse la ecuación:

Siendo R la constante de los gases. T la temperatura en Kelvin y M la concentración molar de las especies en la disolución.

En primer lugar calcularemos la concentración de NaCl que hemos adicionado considerando 1 litro de disolución ó 1 kg de disolución (densidad es 1kg/L) y que la masa molar del NaCl es 58,5 g/mol

=0,1555 molar

En el caso de los electrolitos como el NaCl se produce una disociación en iones, lo cual pro-duce un aumento en el número de partículas disueltas. Lo que influye sobre las propiedades coligativas debido a que éstas dependen de la cantidad de partículas disueltas no de su naturaleza. Cada electrolito se caracteriza por un grado de disociación, que indica el % de la especie que se encuentra disociada. En este caso nos indican que el NaCl está disociado en un 90%. El equilibrio de disociación se expresa mediante una ecuación química:

NaCl(a.c) Na+ + Cl-

Inicialmente M 0 0

Al final M(1-) M M
Donde  es el grado de disociación expresado en tanto por uno. En este caso  = 0,90 por tanto al final en 1 litro de la disolución habrá:

0,1555 (1-0,90) moles de NaCl sin disociar

0,1555.0,90 moles de Na+

0,1555.0,90 moles de Cl-

En total en la disolución hay 0,1555(1-0,90+0,90+0,90) = 0,1555.i = 0,295 moles/L
La presión osmótica de la disolución que es isotónica con la sangre es:



a) Respuesta: presión osmótica de la sangre= 7,5 atm
b) La temperatura de congelación es también una propiedad que depende del número de partículas disueltas luego es necesario también tener en cuenta la disociación.



Con los datos del enunciado calculamos la molalidad de la disolución de NaCl.



Teniendo en cuenta el grado de disociación m.i = 0,157 (1+0,90) = 0,208 molal y tomando el dato de la constante Kc = 1,85ªC/molal



Considerando que la temperatura de congelación normal del agua es 0ºC, esta disolución congelará a Tc = -0,55 ºC.

b) Respuesta: Tc = -0,55ºC
c) Para disminuir la presión osmótica a 5 atm será necesario disminuir la molaridad adi-cionando disolvente (agua)



En 100 g (0,1 litros) de la disolución inicial había:



Para que la disolución sea 0,197 molar será necesario añadir un volumen x de agua:



c) Respuesta: 50 mL de agua
6.- Suponiendo que se cumple la Ley de Raoult, explicar que variaciones sufre la presión de vapor del agua si se disuelven 43,68 g de azúcar, C12H22O11, en 245,0 mL de agua a 25 ºC. A esta temperatura la densidad del agua es 0,9971 g/mL y su presión de vapor es 23,756 Torr (mm Hg). El azúcar no se evapora ni se disocia en agua.
SOLUCIÓN

La Ley de Raoult se cumple en disoluciones ideales. Por tanto considerando que se trata de una disolución ideal se cumple:

Lo que indica que la presión de vapor del H2O disminuye proporcionalmente a la cantidad de soluto disuelto, expresado en fracción molar. Esto quiere decir que a una determinada tem-peratura el agua se evapora menos si contiene un soluto disuelto que cuando es agua sola.

De forma que el agua en presencia de un soluto, disminuye su presión de vapor, disminuye su temperatura de congelación y aumenta su temperatura de ebullición, aumenta su presión osmótica.

En primer lugar calcularemos la fracción molar del azúcar en la disolución, siendo la masa molar del C12H22O11 = 342 g/mol y la del H2O = 18 g/mol

La masa de agua es:



Sustituyendo en la Ley de Raoult:



La presión de vapor del agua habrá disminuido desde 23,756 Torr hasta 23,534 Torr
Respuesta: desde 23,756 Torr hasta 23,534 Torr

Añadir el documento a tu blog o sitio web

similar:

Solución cálculo de la fracción molar de ambos componentes iconMolalidad- fraccion molar

Solución cálculo de la fracción molar de ambos componentes icon1 er repartido de ejercicios de aplicación temas: cantidad química...

Solución cálculo de la fracción molar de ambos componentes iconSinopsis proyecto de decreto que reforma la fracción XIV del artículo...

Solución cálculo de la fracción molar de ambos componentes iconSolución compuesta en un 70-85% por agua. El resto son componentes...

Solución cálculo de la fracción molar de ambos componentes iconSinopsis que reforma los artículos 73, fracción XXVI, 78, fracción...

Solución cálculo de la fracción molar de ambos componentes iconPrograma: losas o placas. Losas macizas y alivianadas. Cálculo y...

Solución cálculo de la fracción molar de ambos componentes iconComponentes de la placa base microprocesador
«cerebro» de un sistema informático. El procesador puede definirse, como un circuito integrado constituido por millones de componentes...

Solución cálculo de la fracción molar de ambos componentes iconSolución de Lugol Solución de sacarosa al 10 %

Solución cálculo de la fracción molar de ambos componentes iconCalculo financiero curso: Angel Trossero

Solución cálculo de la fracción molar de ambos componentes iconProceso de calculo de provisiones de riesgo pais






© 2015
contactos
ley.exam-10.com