Dmitri Mendeléyev






descargar 246.16 Kb.
títuloDmitri Mendeléyev
página9/10
fecha de publicación21.06.2016
tamaño246.16 Kb.
tipoDocumentos
ley.exam-10.com > Química > Documentos
1   2   3   4   5   6   7   8   9   10

8. Enlace metálico


Por último estudiaremos el enlace metálico, su importancia la podemos ver en el hecho de que las 3/4 partes de elementos del sistema periódico son metales. El papel que estas sustancias han tenido en el desarrollo de la humanidad es tan importante que incluso se distingue entre la edad de piedra, la edad del bronce y la del hierro. De los 90 elementos que se presentan en la naturaleza algunos metales como el sodio y el magnesio, pueden extraerse de los océanos donde se encuentran disueltos. Los demás metales se suelen obtener a partir de depósitos minerales que se hallan encima o debajo de la superficie terrestre. Algunos metales son tan poco reactivos que es posible encontrarlos directamente en forma elemental, este es el caso del oro, la plata y el platino. Otros se encuentran formando parte de distintos compuestos químicos. En general presentan propiedades muy peculiares que los han diferenciado desde hace siglos de las restantes sustancias, tales como: ser excelentes conductores del calor y la electricidad en estado sólido, ser fácilmente deformables (lo que permite trabajarlos y fabricar con ellos objetos de distintas formas). Por otra parte suelen presentarse como sólidos de dureza variable, con muy diversos puntos de fusión y ebullición (el galio, por ejemplo, funde a 2978° mientras que otro metal, el tantalio, lo hace a casi 3000°).

A. 33. ¿Qué implicaciones tuvo para la humanidad el descubrimiento de metales como el cobre y el hierro y la puesta a punto de técnicas adecuadas para extraerlos y trabajarlos?

C.33. Con este tipo de actividades propiciamos la contextualización del tema, el estudiante se ve obligado a meditar sobre las implicaciones que ha tenido este estudio en el transcurso de la historia de la humanidad. En primer lugar podemos referirnos a la sustitución de herramientas y armas de piedra por otras de cobre. 3000 años antes de nuestra era, los sumerios sabían obtener cobre y alearlo con estaño para fabricar bronce. Posteriormente, cuando se dispuso de la tecnología adecuada, el bronce fue sustituido en muchos casos por el hierro. Las flechas y lanzas con puntas de hierro, supusieron una mejora en el rendimiento de la caza. También la invención del arado de hierro (unos 1000 años antes de nuestra era), cambió de forma espectacular la agricultura. Así mismo, las llantas metálicas colocadas en las ruedas de los carromatos o las simples herraduras de los caballos, dieron lugar a mejoras importantes en los primeros medios de transporte terrestre. Herramientas de hierro como martillos, clavos, sierras, etc., contribuyeron también de forma decisiva a la construcción de viviendas. La capacidad de los metales en general para ser moldeados en diferentes formas, permitió la elaboración de diversos recipientes de gran utilidad en la alimentación: ollas, platos, cucharas, cacerolas, etc., o la construcción de elementos de protección como las armaduras, escudos, cascos, mallas, etc. El descubrimiento de que el hierro podía mejorar muchas de sus propiedades al añadirle una cierta cantidad de carbón vegetal (acero), fue también un hito importante en la utilización de los metales.

A partir del siglo XVIII el desarrollo de la máquina de vapor y de los motores de explosión, suponen un enorme desarrollo de la industria siderúrgica, al tener que fabricar vías de ferrocarril, puentes, trenes, automóviles, barcos, monumentos, etc. Otra propiedad general de los metales, como es su capacidad para conducir la corriente en estado sólido, permitió más tarde transportar energía eléctrica de unos lugares a otros utilizando largos cables de cobre. Sin ello no hubiera sido posible la electrificación de ciudades y pueblos. Otros metales muy importantes son los llamados metales preciosos como la plata y el oro, usados desde la antigüedad en la fabricación de joyas y de monedas.

Tampoco podemos olvidar la utilización cada vez mayor de ciertos metales que tienen propiedades muy específicas, como los ejemplos que, en orden aleatorio, se citan a continuación: El aluminio en la construcción de diversos vehículos y en la industria de la construcción en general, por su baja densidad y resistencia a la corrosión. El calcio es un metal que forma parte de los huesos y dientes. La luz emitida por algunos metales, como el sodio y el mercurio, en estado de vapor e incandescentes se utiliza en iluminación de casa y ciudades. Metales como el cinc, el cadmio y el mercurio, se utilizan en la fabricación de pilas eléctricas. Uno de los usos del plomo, es como barrera frente a radiaciones (así las personas que trabajan con aparatos de rayos X se protegen con delantales y guantes de plomo), etc.

Desde el punto de vista electrónico los átomos de los metales se caracterizan por tener pocos electrones de valencia. Además dichos electrones tienen mucha facilidad para moverse en el nivel de energía en el que se encuentran (nivel más externo) lo cual podemos interpretar (en una primera aproximación) como una consecuencia de que éste se encuentre tan vacío.

Si tomamos como ejemplo el átomo de sodio, podemos plantearnos el problema de cómo explicar la existencia de un cristal de sodio metálico. Si intentamos aplicar el concepto de enlace covalente desarrollado en el punto anterior, nos encontramos con una dificultad: cada átomo de sodio, en su nivel de energía más externo, sólo tiene un electrón por lo que le faltarían 7 más para completar su octeto.

A.34. Utilice las ideas expuestas sobre los electrones de valencia de los metales para tratar de justificar las uniones entre átomos metálicos de sodio.

C.34. En principio podemos pensar en la compartición de 8 electrones aportados por otros tantos átomos de sodio. Dichos electrones debido a su gran movilidad formarían una especie de nube electrónica común a 8 cationes Na+ y esto se extendería en las tres direcciones del espacio con todos los restantes átomos del metal. La idea anterior se puede aplicar a cualquier metal que podría entenderse así como una red de iones positivos vibrando en torno a una posición de equilibrio, en cuyo interior habría una nube colectiva de electrones de valencia con gran libertad de movimientos, la cual actuaría como elemento de unión entre los iones positivos. Esta es precisamente una de las características fundamentales del enlace metálico: la deslocalización de los electrones de valencia

A.35. Justifique de acuerdo con el modelo propuesto algunas de las propiedades de los metales.

C.35. La conductividad eléctrica de los metales puede explicarse debido a la gran movilidad de los electrones de valencia. El hecho de que un cable metálico se caliente cuando conduce la corriente eléctrica se debería, según el modelo propuesto, a las interacciones entre los iones positivos de la red (en continua vibración) y los electrones que constituyen la corriente, lo cual hace que cuando se disminuye mucho la temperatura de un metal y los iones positivos de la red reducen la amplitud de sus vibraciones, la resistencia al paso de la corriente (desplazamiento de los electrones de valencia de un punto a otro) pueda disminuir de forma muy significativa.

Existen muchos metales para los que la resistencia al paso de la corriente es prácticamente nula por debajo de una temperatura determinada (temperatura crítica). Este fenómeno se llama superconductividad y fue descubierto en 1911 por el físico holandés H. Kamerling Onnes. Así, por ejemplo, la temperatura crítica del mercurio es de -268.8°C. De hecho se han observado corrientes eléctricas en anillos metálicos superconductores que se han mantenido durante años sin pérdidas aparentes. Naturalmente es preciso gastar energía en mantener el anillo a la temperatura adecuada. En la actualidad se está investigando intensamente en la obtención de materiales que presenten superconductividad a temperaturas más altas. Una de las líneas de investigación es trabajar con unos nuevos materiales que tienen óxido de cobre en su composición (cupratos). De momento el récord se obtuvo en 1993 con una temperatura crítica de -138°C

Si se consiguiera fabricar materiales que presentaran el fenómeno de la superconductividad a temperatura ambiente ocurriría una verdadera revolución ya que se podría transportar la corriente eléctrica sin sufrir apenas ninguna pérdida de energía, las máquinas eléctricas trabajarían más rápido y sin calentarse con un consumo de energía mucho menor (casi el 15 % de la factura de electricidad proviene de pérdidas debidas a la resistencia eléctrica), la contaminación atmosférica disminuiría, se podrían crear campos magnéticos muy potentes.

A.36. Discute en tu grupo: ¿Por qué un trozo de sal común es frágil y se puede romper fácilmente cuando se le somete a una fuerza y no ocurre lo mismo con un trozo de metal que se deforma antes de romperse?

C.36. El modelo establecido para explicar el enlace metálico también es coherente con otras propiedades características de los metales como, por ejemplo, la posibilidad de deformación sin que se produzca la rotura del cristal (como ocurre en los sólidos iónicos) ya que la deformación del cristal supone únicamente un desplazamiento de los planos de la red que conduce a una nueva situación que apenas se diferencia en nada de la anterior. En las figuras siguientes se pueden diferenciar de forma simple estos fenómenos:



(Comparación entre el comportamiento de un sólido metálico y otro iónico cuando se someten a una fuerza)

Análogamente el hecho de que los metales sean mucho mejor conductores del calor que materiales como la madera o el corcho blanco, se puede explicar también por la facilidad con que en los primeros se pueden mover los electrones de valencia y pueden vibrar los restos atómicos positivos. Todos hemos notado alguna vez lo bien que un metal transmite el calor cuando, por ejemplo, tocamos un objeto metálico que ha estado expuesto un tiempo al sol. La sensación es muy distinta que si tocamos un objeto de madera (igualmente expuesto) el cual nos parece que está a menor temperatura porque transmite mucho peor el calor a nuestra piel. Es por eso que los metales son muy malos aislantes térmicos.

A.37. Justifica, razonadamente, ¿por qué se ha prohibido el uso de pinturas, crayones y otros materiales que contengan plomo en sus estructuras?

C.37. Con esta actividad tratamos de que la información suministrada a los estudiantes no parezca que es solo para aprobar un tema, sino que le ayuda a comprender mejor su entorno, en este caso será inducido a razonar sobre las característica de este metal y sus enlaces y llegarán a la conclusión de que por la facilidad que tienen estos átomos enlazados para desplazarse sin romper el cristal garantiza su permanencia en los organismos humanos, como en efecto sucede, el plomo se acumula en la sangre produciendo muerte por envenenamiento con plomo.
1   2   3   4   5   6   7   8   9   10






© 2015
contactos
ley.exam-10.com