Dmitri Mendeléyev






descargar 246.16 Kb.
títuloDmitri Mendeléyev
página8/10
fecha de publicación21.06.2016
tamaño246.16 Kb.
tipoDocumentos
ley.exam-10.com > Química > Documentos
1   2   3   4   5   6   7   8   9   10

6. Electronegatividad


Linus Pauling definió la electronegatividad como La capacidad que tienen los átomos de atraer y retener los electrones que participan en un enlace químico. La electronegatividad se ha establecido en escala de 0 hasta 4. Pauling asignó de manera arbitraria un valor de 4 al fluor que es el elemento con más capacidad para atraer electrones. En química los valores de electronegatividad de los elementos se determinan midiendo las polaridades de los enlaces entre diversos átomos. La polaridad del enlace depende de la diferencia entre los valores de electronegatividad de los átomos que lo forman.

A.22. Con la ayuda de tu tabla periódica indica si la electronegatividad de los elementos de cada compuesto iónico es alta o baja. Ordena los compuestos iónicos según el incremento de polaridad del enlace.

Compuesto

Metal

No Metal

NaCl





CaO





LiF0





Ordenamiento: --------------------------------------------------------------------------

C.22. Quedará establecido que las diferencias de electronegatividades entre átomos que forman un enlace, será mayor en compuestos iónicos, por lo tanto, la relación será que a mayor diferencia de electronegatividad entre los átomos, mayor polaridad del enlace.

A.23. Discute en tu grupo: ¿Qué relación hay entre la electronegatividad de un elemento y su tendencia a ceder electrones?

C.23. En este punto podemos aprovechar la oportunidad para ligar conceptos, por ejemplo, quedará establecido que los elementos que están a la izquierda de la tabla periódica presentan baja electronegatividad y tendencia a formar cationes o sea ceder electrones y los que están a la derecha tendrán alta electronegatividad y tendencia contraria, de esta forma estaremos enfatizando en el conocimiento de la tabla periódica.

A.24. El enlace iónico, ¿qué propiedades da a un compuesto? Diseña un experimento que te permita identificar esas propiedades.

C.24. A modo de recapitulación y contextualización de este apartado, por todo lo discutido hasta el momento evaluaremos la capacidad de los participantes de diseñar una práctica que les permita reconocer un compuesto con enlaces iónicos, con esto se facilita los aprendizajes de las características de este tipo de enlace de forma constructivista.

7. El enlace covalente


El modelo de enlace entre iones no se puede utilizar para explicar la unión entre cualquier pareja de átomos. Si dos átomos son iguales, no existe ninguna razón que justifique que uno de estos átomos se transforme en ión. Para justificar estas situaciones se utiliza otro modelo de enlace. Cuando los átomos que forman un enlace comparten sus electrones con la finalidad de cumplir con la regla de los ocho, se forma un enlace. El tipo de enlace que se observa en la molécula de hidrógeno y en otras moléculas en que los electrones son compartidos por los dos núcleos se llama enlace covalente. En la molécula de H2 los electrones residen principalmente en el espacio entre los núcleos en donde son atraídos de manera simultánea por ambos protones. El aumento de fuerzas de atracción en esta zona provoca la formación de la molécula de H2 a partir de dos átomos de hidrógeno separados. La formación de un enlace entre los átomos de hidrógeno implica que la molécula H2 es más estable por determinada cantidad de energía, que dos átomos separados (energía de enlace).



A.25. El cloro existe en la naturaleza como molécula diatómica (Cl2). ¿Cómo esperarías que cada átomo de cloro adquiera configuración electrónica estable? Dibuja la estructura de Lewis para la molécula de Cl2.

C.25. Este caso se aclarará considerando también lo que ocurre al acercarse dos átomos de cloro:



Cuando dos átomos idénticos se acercan los dos electrones son atraídos de manera simultánea por ambos núcleos. Así se forma el enlace.

7.1. Otros tipos de enlaces covalentes entre los átomos


Hasta el momento se han considerado dos tipos de enlace extremos. En el enlace iónico, los átomos que participan son tan distintos que ganan o pierden uno o más electrones para formar iones con carga opuesta. El enlace se debe a las atracciones entre los iones. En el enlace covalente dos átomos idénticos comparten electrones de manera igual. La formación del enlace se debe a la atracción mutua de los dos núcleos hacia los electrones compartidos. Entre estos extremos se encuentran casos intermedios en los cuales los átomos no son tan distintos que ganen o pierdan electrones en su totalidad, pero son bastante distintos para que haya un compartimento desigual de electrones y se forme lo que se conoce como enlace covalente polar. La molécula de fluoruro de hidrógeno (HF) contiene este tipo de enlace en el cual existe la siguiente distribución de carga:



En donde la letra griega (delta) indica una carga parcial o fraccionaria.

A.26. Explica la polaridad de los enlaces en la molécula de agua, H2O y en la de HCl

C.26. La explicación más lógica para el desarrollo de la polaridad del enlace (la carga parcial positiva y negativa sobre los átomos en moléculas como HCl) es que los electrones de los enlaces no se comparten de igual manera. Por ejemplo la polaridad de la molécula HCl se explica suponiendo que el átomo de cloro tiene una atracción más fuerte que al átomo de hidrógeno hacia los electrones que se comparten.

a) Distribución de la carga en la molécula de agua b) distribución de la carga en la molécula de cloruro de hidrógeno





Como la polaridad del enlace tiene implicaciones químicas importantes es conveniente asignar un número para indicar la capacidad del átomo para atraer a los electrones compartidos, o bien señalarlo con una flecha cuya punta esté dirigida hacia el centro de carga negativa.

A.27. Discute en tu grupo qué diferencia hay entre enlace iónico y enlace covalente. ¿Qué diferencias presentan estos tipos de enlace respecto a la electronegatividad y la polaridad?

C.27. Como una actividad de recapitulación, es conveniente que los estudiantes realicen la comparación entre estos tipos de enlaces y determinen las relaciones de cada uno con los conceptos de electronegatividad y polaridad.

7.2. Enlace covalente múltiple


A.28. El hidrógeno, oxígeno y nitrógeno existen en su estado libre como moléculas diatómicas. Escribe la estructura de Lewis para cada molécula e identifica el tipo de enlace formado en cada caso y la cantidad de electrones compartidos.

C.28.Hasta ahora hemos analizado la formación de enlaces sencillos, es decir aquellos en que se comparten un solo par de electrones entre los átomos, como en el hidrógeno. Alguno elementos del sistema periódico tienen la particularidad de poder establecer uniones covalentes en las que se comparten varios electrones formándose enlaces covalentes múltiples. Este es el caso, por ejemplo, de las moléculas de oxígeno y nitrógeno. En efecto, el oxígeno es un elemento que se encuentra en la sexta columna del sistema periódico por lo que tiene seis electrones de valencia y le faltan dos para completar el octeto.



La formación de la molécula de O2, se puede explicar así por la compartición de dos electrones de valencia aportados por cada átomo formándose un enlace covalente doble entre los átomos de oxígeno

A.29. Dibuja una posible estructura de Lewis para el dióxido de carbono (CO2).

C.29. Lo inicial será encontrar la forma de ordenar los 16 electrones disponibles (4 del carbono y 6 de cada oxígeno) de manera que cada átomo tenga un octeto. Esto conducirá al estudiante a tres posibles estructuras que satisfacen la condición:

7.3. ¿Cómo se forma un enlace covalente coordinado?


Cuando el par de electrones compartidos pertenece solo a uno de los átomos se presenta un enlace covalente coordinado o dativo. El átomo que aporta el par de electrones se llama donador y el que los recibe receptor o aceptor.



El donador será siempre el elemento menos electronegativo, tal como se muestra en el ejemplo entre el oxígeno y el azufre, que puede dar lugar a las moléculas correspondientes a distintos óxidos de azufre. Este enlace una vez formado no se diferencia para nada del enlace covalente normal. Sin embargo debido a cómo se origina se le puede denominar enlace covalente dativo o coordinado. Conviene tener en cuenta que no siempre las moléculas que teóricamente se podrían formar utilizando este tipo de enlace, existen en la realidad, ya que en ello intervienen también otros factores que aquí no hemos tenido en cuenta, como por ejemplo, el tamaño de los átomos que van a enlazarse y la propia geometría o forma de las moléculas.

A.30. A partir de la utilización del enlace covalente coordinado justifica las fórmulas de los siguientes compuestos: N2O5 ; y Cl2O3 .

C.30. En el enlace covalente coordinado el átomo que aporta electrones adquiere carga ligeramente positiva, mientras que el que recibe adquiere carga ligeramente negativa. El enlace químico se debe en gran medida a la diferencia de electronegatividad de los elementos que forman enlace.

7.4. Conductividad del enlace covalente


La falta de conductividad en estas sustancias se puede explicar porque los electrones de enlace están fuertemente localizados atraídos por los dos núcleos de los átomos enlazados. La misma explicación se puede dar para las disoluciones de estas sustancias en disolventes del tipo del benceno, donde se encuentran las moléculas individuales sin carga neta moviéndose en la disolución. Dada la elevada energía necesaria para romper un enlace covalente, es de esperar un elevado punto de fusión cuando los átomos unidos extiendan sus enlaces en las tres direcciones del espacio como sucede en el diamante; no obstante, cuando el número de enlaces es limitado como sucede en la mayor parte de las sustancias (oxígeno, hidrógeno, amoníaco, etc.) con enlaces covalentes, al quedar saturados los átomos enlazados en la molécula, la interacción entre moléculas que se tratará más adelante, será débil, lo que justifica que con frecuencia estas sustancias se encuentren en estado gaseoso a temperatura y presión ordinarias y que sus puntos de fusión y ebullición sean bajos.

A.31. El enlace covalente, ¿qué propiedades da a un compuesto? Diseña un experimento que te permita identificar esas propiedades

A.32. A partir del modelo establecido para el enlace covalente, justifica las propiedades más características de estos compuestos

C.31. y C.32. El modelo de enlace covalente que hemos construido es una simplificación que no permite responder a ciertas preguntas como, por ejemplo, la forma que tienen muchas moléculas (por qué en el diamante los átomos de carbono se unen formando tetraedros, por qué la molécula de agua no es lineal, etc.). El estudio de estas cuestiones se realizará en cursos posteriores de química.
1   2   3   4   5   6   7   8   9   10






© 2015
contactos
ley.exam-10.com