Título original: Über die spezielte und allgemeine Relatiuitátstheorie






descargar 465.78 Kb.
títuloTítulo original: Über die spezielte und allgemeine Relatiuitátstheorie
página1/9
fecha de publicación14.06.2016
tamaño465.78 Kb.
tipoDocumentos
ley.exam-10.com > Ley > Documentos
  1   2   3   4   5   6   7   8   9


albert einstein

Sobre la teoría

de la relatividad

especial y general


Título ORIGINAL: Über die spezielte und allgemeine Relatiuitátstheorie

DISEÑO DE CUBIERTA: Neslé Soulé

EDICIONES ALTAYA, S.A.
© The Albert Einstein Archives, The Jewish National & University Library. The Hebrew University of Jerusalem, Israel

© de la traducción: Miguel Paredes Larrucea © 1984, 1986, 1988, 1991, 1994, 1995, 1996 Alianza Editorial, S.A.

Madrid © 1998, Ediciones Altaya, S.A.

ISBN Obra Completa: 84-487-1250-1

ISBN volumen 2: 8«87-l 252-8

DEPÓSITO LEGAL: B-40.417-98

Impreso en España-Printed in Spain FECHA DE REIMPRESIÓN: febrero de 1999

Escaneado por C. Alado [Eleute]

Octubre de 2002

Prólogo

El presente librito pretende dar una idea lo más exacta posible de la teoría de la relatividad, pensando en aquellos que, sin dominar el aparato matemático de la física teórica, tienen interés en la teoría desde el punto de vista científico o filosófico general. La lectura exige una formación de bachillerato aproximadamente y —pese a la brevedad del librito— no poca paciencia y voluntad por parte del lector. El autor ha puesto todo su empeño en resaltar con la máxima claridad y sencillez las ideas principales, respetando por lo general el orden y el contexto en que realmente surgieron. En aras de la claridad me pareció inevitable repetirme a menudo, sin reparar lo más mínimo en la elegancia expositiva; me atuve obstinadamente al precepto del genial teórico L. Boltzmann, de dejar la elegancia para los sastres y zapateros. Las dificultades que radican en la teoría propiamente dicha creo no habérselas ocultado al lector, mientras que las bases físicas empíricas de la teoría las he tratado deliberadamente con cierta negligencia, para que al lector alejado de la física no le ocurra lo que al caminante, a quien los árboles no le dejan ver el bosque. Espero que el librito depare a más de uno algunas horas de alegre entretenimiento.

Diciembre de 1916. A. EINSTEIN

Primera parte

Sobre la teoría de la relatividad especial

1. El contenido físico de los teoremas geométricos
Seguro que también tú, querido lector, entablaste de niño conocimiento con el soberbio edificio de la Geometría de Euclides y recuerdas, quizá con más respeto que amor, la imponente construcción por cuyas altas escalinatas te pasearon durante horas sin cuento los meticulosos profesores de la asignatura. Y seguro que, en virtud de ese tu pasado, castigarías con el desprecio a cualquiera que declarase falso incluso el más recóndito teoremita de esta ciencia. Pero es muy posible que este sentimiento de orgullosa seguridad te abandonara de inmediato si alguien te preguntara: «¿Qué entiendes tú al afirmar que estos teoremas son verdaderos?». Detengámonos un rato en esta cuestión.

La Geometría parte de ciertos conceptos básicos, como el de plano, punto, recta, a los que estamos en condiciones de asociar representaciones más o menos claras, así como de ciertas proposiciones simples (axiomas) que, sobre la base de aquellas representaciones, nos inclinamos a dar por «verdaderas». Todos los demás teoremas son entonces referidos a aquellos axiomas (es decir, son demostrados) sobre la base de un método lógico cuya justificación nos sentimos obligados a reconocer. Un teorema es correcto, o «verdadero», cuando se deriva de los axiomas a través de ese método reconocido. La cuestión de la «verdad» de los distintos teoremas geométricos remite, pues, a la de la «verdad» de los axiomas. Sin embargo, se sabe desde hace mucho que esta última cuestión no sólo no es resoluble con los métodos de la Geometría, sino que ni siquiera tiene sentido en sí. No se puede preguntar si es verdad o no que por dos puntos sólo pasa una recta. Únicamente cabe decir que la Geometría euclídea trata de figuras a las que llama «rectas» y a las cuales asigna la propiedad de quedar unívocamente determinadas por dos de sus puntos. El concepto de «verdadero» no se aplica a las proposiciones de la Geometría pura, porque con la palabra «verdadero» solemos designar siempre, en última instancia, la coincidencia con un objeto «real»; la Geometría, sin embargo, no se ocupa de la relación de sus conceptos con los objetos de la experiencia, sino sólo de la relación lógica que guardan estos conceptos entre sí.

El que, a pesar de todo, nos sintamos inclinados a calificar de «verdaderos» los teoremas de la Geometría tiene fácil explicación. Los conceptos geométricos se corresponden más o menos exactamente con objetos en la naturaleza, que son, sin ningún género de dudas, la única causa de su formación. Aunque la Geometría se distancie de esto para dar a su edificio el máximo rigor lógico, lo cierto es que la costumbre, por ejemplo, de ver un segmento como dos lugares marcados en un cuerpo prácticamente rígido está muy afincada en nuestros hábitos de pensamiento. Y también estamos acostumbrados a percibir tres lugares como situados sobre una recta cuando, mediante adecuada elección del punto de observación, podemos hacer coincidir sus imágenes al mirar con un solo ojo.

Si, dejándonos llevar por los hábitos de pensamiento, añadimos ahora a los teoremas de la Geometría euclídea un único teorema más, el de que a dos puntos de un cuerpo prácticamente rígido les corresponde siempre la misma distancia (segmento), independientemente de las variaciones de posición a que sometamos el cuerpo, entonces los teoremas de la Geometría euclídea se convierten en teoremas referentes a las posibles posiciones relativas de cuerpos prácticamente rígidos1. La Geometría así ampliada hay que contemplarla como una rama de la física. Ahora sí cabe preguntarse por la «verdad» de los teoremas geométricos así interpretados, porque es posible preguntar si son válidos o no para aquellos objetos reales que hemos asignado a los conceptos geométricos. Aunque con cierta imprecisión, podemos decir, pues, que por «verdad» de un teorema geométrico entendemos en este sentido su validez en una construcción con regla y compás.

Naturalmente, la convicción de que los teoremas geométricos son «verdaderos» en este sentido descansa exclusivamente en experiencias harto incompletas. De entrada daremos por supuesta esa verdad de los teoremas geométricos, para luego, en la última parte de la exposición (la teoría de la relatividad general), ver que esa verdad tiene sus límites y precisar cuáles son éstos.

2. El sistema de coordenadas

Basándonos en la interpretación física de la distancia que acabamos de señalar estamos también en condiciones de determinar la distancia entre dos puntos de un cuerpo rígido por medio de mediciones. Para ello necesitamos un segmento (regla S) que podamos utilizar de una vez para siempre y que sirva de escala unidad. Si A y B son dos puntos de un cuerpo rígido, su recta de unión es entonces construible según las leyes de la Geometría; sobre esta recta de unión, y a partir de A, llevamos el segmento S tantas veces como sea necesario para llegar a B. El número de repeticiones de esta operación es la medida del segmento AB. Sobre esto descansa toda medición de longitudes2.

Cualquier descripción espacial del lugar de un suceso o de un objeto consiste en especificar el punto de un cuerpo rígido (cuerpo de referencia) con el cual coincide el suceso, y esto vale no sólo para la descripción científica, sino también para la vida cotidiana. Si analizo la especificación de lugar «en Berlín, en la Plaza de Potsdam», veo que significa lo siguiente. El suelo terrestre es el cuerpo rígido al que se refiere la especificación de lugar; sobre él, «Plaza de Potsdam en Berlín» es un punto marcado, provisto de nombre, con el cual coincide espacialmente el suceso 3.

Este primitivo modo de localización sólo atiende a lugares situados en la superficie de cuerpos rígidos y depende de la existencia de puntos distinguibles sobre aquélla. Veamos cómo el ingenio humano se libera de estas dos limitaciones sin que la esencia del método de localización sufra modificación alguna. Si sobre la Plaza de Potsdam flota por ejemplo una nube, su posición, referida a la superficie terrestre, cabrá fijarla sin más que erigir en la plaza un mástil vertical que llegue hasta la nube. La longitud del mástil medida con la regla unidad, junto con la especificación del lugar que ocupa el pie del mástil, constituyen entonces una localización completa. El ejemplo nos muestra de qué manera se fue refinando el concepto de lugar:


  1. Se prolonga el cuerpo rígido al que se refiere la localización, de modo que el cuerpo rígido ampliado llegue hasta el objeto a localizar.

  2. Para la caracterización del lugar se utilizan números, y no la nomenclatura de puntos notables (en el caso anterior, la longitud del mástil medida con la regla).

  3. Se sigue hablando de la altura de la nube aun cuando no se erija un mástil que llegue hasta ella. En nuestro caso, se determina —mediante fotografías de la nube desde diversos puntos del suelo y teniendo en cuenta las propiedades de propagación de la luz— qué longitud habría que dar al mástil para llegar a la nube.


De estas consideraciones se echa de ver que para la descripción de lugares es ventajoso independizarse de la existencia de puntos notables, provistos de nombres y situados sobre el cuerpo rígido al que se refiere la localización, y utilizar en lugar de ello números. La física experimental cubre este objetivo empleando el sistema de coordenadas cartesianas.

Este sistema consta de tres paredes rígidas, planas, perpendiculares entre sí y ligadas a un cuerpo rígido. El lugar de cualquier suceso, referido al sistema de coordenadas, viene descrito (en esencia) por la especificación de la longitud de las tres verticales o coordenadas (x, y, z) (cf. Fig. 2, p. 33) que pueden trazarse desde el suceso hasta esas tres paredes. Las longitudes de estas tres perpendiculares pueden determinarse mediante una sucesión de manipulaciones con reglas rígidas, manipulaciones que vienen prescritas por las leyes y métodos de la Geometría euclidiana.

En las aplicaciones no suelen construirse realmente esas paredes rígidas que forman el sistema de coordenadas; y las coordenadas tampoco se determinan realmente por medio de construcciones con reglas rígidas, sino indirectamente. Pero el sentido físico de las localizaciones debe buscarse siempre en concordancia con las consideraciones anteriores, so pena de que los resultados de la física y la astronomía se diluyan en la falta de claridad4.

La conclusión es, por tanto, la siguiente: toda descripción espacial de sucesos se sirve de un cuerpo rígido al que hay que referirlos espacialmente. Esa referencia presupone que los «segmentos» se rigen por las leyes de la Geometría euclídea, viniendo representados físicamente por dos marcas sobre un cuerpo rígido.
3. Espacio y tiempo en la Mecánica clásica

Si formulo el objetivo de la Mecánica diciendo que «la Mecánica debe describir cómo varía con el tiempo la posición de los cuerpos en el espacio», sin añadir grandes reservas y prolijas explicaciones, cargaría sobre mi conciencia algunos pecados capitales contra el sagrado espíritu de la claridad. Indiquemos antes que nada estos pecados.

No está claro qué debe entenderse aquí por «posición» y «espacio». Supongamos que estoy asomado a la ventanilla de un vagón de ferrocarril que lleva una marcha uniforme, y dejo caer una piedra a la vía, sin darle ningún impulso. Entonces veo (prescindiendo de la influencia de la resistencia del aire) que la piedra cae en línea recta. Un peatón que asista a la fechoría desde el terraplén observa que la piedra cae a tierra según un arco de parábola. Yo pregunto ahora: las «posiciones» que recorre la piedra ¿están «realmente» sobre una recta o sobre una parábola? Por otro lado, ¿qué significa aquí movimiento en el «espacio»? La respuesta es evidente después de lo dicho en §2. Dejemos de momento a un Lado la oscura palabra «espacio», que, para ser sinceros, no nos dice absolutamente nada; en lugar de ella ponemos «movimiento respecto a un cuerpo de referencia prácticamente rígido». Las posiciones con relación al cuerpo de referencia (vagón del tren o vías) han sido ya definidas explícitamente en el epígrafe anterior. Introduciendo en lugar de «cuerpo de referencia» el concepto de «sistema de coordenadas», que es útil para la descripción matemática, podemos decir: la piedra describe, con relación a un sistema de coordenadas rígidamente unido al vagón, una recta; con relación a un sistema de coordenadas rígidamente ligado a las vías, una parábola. En este ejemplo se ve claramente que en rigor no existe una trayectoria5, sino sólo una trayectoria con relación a un cuerpo de referencia determinado.

Ahora bien, la descripción completa del movimiento no se obtiene sino al especificar cómo varía la posición del cuerpo con el tiempo, o lo que es lo mismo, para cada punto de la trayectoria hay que indicar en qué momento se encuentra allí el cuerpo. Estos datos hay que completarlos con una definición del tiempo en virtud de la cual podamos considerar estos valores temporales como magnitudes esencialmente observables (resultados de mediciones). Nosotros, sobre el suelo de la Mecánica clásica, satisfacemos esta condición —con relación al ejemplo anterior— de la siguiente manera. Imaginemos dos relojes exactamente iguales; uno de ellos lo tiene el hombre en la ventanilla del vagón de tren; el otro, el hombre que está de pie en el terraplén. Cada uno de ellos verifica en qué lugar del correspondiente cuerpo de referencia se encuentra la piedra en cada instante marcado por el reloj que tiene en la mano. Nos abstenemos de entrar aquí en la imprecisión introducida por el carácter finito de la velocidad de propagación de la luz. Sobre este extremo, y sobre una segunda dificultad que se presenta aquí, hablaremos detenidamente más adelante.

4. El sistema de coordenadas de Galileo

Como es sabido, la ley fundamental de la Mecánica de Galileo y Newton, conocida por la ley de inercia, dice: un cuerpo suficientemente alejado de otros cuerpos persiste en su estado de reposo o de movimiento rectilíneo uniforme. Este principio se pronuncia no sólo sobre el movimiento de los cuerpos, sino también sobre qué cuerpos de referencia o sistemas de coordenadas son permisibles en la Mecánica y pueden utilizarse en las descripciones mecánicas. Algunos de los cuerpos a los que sin duda cabe aplicar con gran aproximación la ley de inercia son las estrellas fijas. Ahora bien, si utilizamos un sistema de coordenadas solidario con la Tierra, cada estrella fija describe, con relación a él y a lo largo de un día (astronómico), una circunferencia de radio enorme, en contradicción con el enunciado de la ley de inercia. Así pues, si uno se atiene a esta ley, entonces los movimientos sólo cabe referirlos a sistemas de coordenadas con relación a los cuales las estrellas fijas no ejecutan movimientos circulares. Un sistema de coordenadas cuyo estado de movimiento es tal que con relación a él es válida la ley de inercia lo llamamos «sistema de coordenadas de Galileo». Las leyes de la Mecánica de Galileo-Newton sólo tienen validez para sistemas de coordenadas de Galileo.

5. El principio de la relatividad (en sentido restringido)

Para conseguir la mayor claridad posible, volvamos al ejemplo del vagón de tren que lleva una marcha uniforme. Su movimiento decimos que es una traslación uniforme («uniforme», porque es de velocidad y dirección constantes; «traslación», porque aunque la posición del vagón varía con respecto a la vía, no ejecuta ningún giro). Supongamos que por los aires vuela un cuervo en línea recta y uniformemente (respecto a la vía). No hay duda de que el movimiento del cuervo es —respecto al vagón en marcha— un movimiento de distinta velocidad y diferente dirección, pero sigue siendo rectilíneo y uniforme. Expresado de modo abstracto: si una masa m se mueve en línea recta y uniformemente respecto a un sistema de coordenadas K, entonces también se mueve en línea recta y uniformemente respecto a un segundo sistema de coordenadas K', siempre que éste ejecute respecto a K un movimiento de traslación uniforme. Teniendo en cuenta lo dicho en el párrafo anterior, se desprende de aquí lo siguiente:

Si K es un sistema de coordenadas de Galileo, entonces también lo es cualquier otro sistema de coordenadas K' que respecto a K se halle en un estado de traslación uniforme. Las leyes de la Mecánica de Galileo-Newton valen tanto respecto a K' como respecto a K

Demos un paso más en la generalización y enunciemos el siguiente principio: Si K' es un sistema de coordenadas que se mueve uniformemente y sin rotación respecto a K, entonces los fenómenos naturales transcurren con respecto a K' según idénticas leyes generales que con respecto a K. Esta proposición es lo que llamaremos el «principio de relatividad» (en sentido restringido).

Mientras se mantuvo la creencia de que todos los fenómenos naturales se podían representar con ayuda de la Mecánica clásica, no se podía dudar de la validez de este principio de relatividad. Sin embargo, los recientes adelantos de la Electrodinámica y de la Óptica hicieron ver cada vez más claramente que la Mecánica clásica, como base de toda descripción física de la naturaleza, no era suficiente. La cuestión de la validez del principio de relatividad se tornó así perfectamente discutible, sin excluir la posibilidad de que la solución fuese en sentido negativo. Existen, con todo, dos hechos generales que de entrada hablan muy a favor de la validez del principio de relatividad. En efecto, aunque la mecánica clásica no proporciona una base suficientemente ancha para representar teóricamente todos los fenómenos físicos, tiene que poseer un contenido de verdad muy importante, pues da con admirable precisión los movimientos reales de los cuerpos celestes. De ahí que en el campo de la Mecánica tenga que ser válido con gran exactitud el principio de relatividad. Y que un principio de generalidad tan grande y que es válido, con tanta exactitud, en un determinado campo de fenómenos fracase en otro campo es, a priori, poco probable.

El segundo argumento, sobre el que volveremos más adelante, es el siguiente. Si el principio de relatividad (en sentido restringido) no es válido, entonces los sistemas de coordenadas de Galileo K, K', K", etc., que se mueven uniformemente unos respecto a los otros, no serán equivalentes para la descripción de los fenómenos naturales. En ese caso no tendríamos más remedio que pensar que las leyes de la naturaleza sólo pueden formularse con especial sencillez y naturalidad si de entre todos los sistemas de coordenadas de Galileo eligiésemos como cuerpo de referencia uno (K0) que tuviera un estado de movimiento determinado. A éste lo calificaríamos, y con razón (por sus ventajas para la descripción de la naturaleza), de «absolutamente en reposo», mientras que de los demás sistemas galileanos K diríamos que son «móviles». Si la vía fuese el sistema K0, pongamos por caso, entonces nuestro vagón de ferrocarril sería un sistema K respecto al cual regirían leyes menos sencillas que respecto a K0. Esta menor simplicidad habría que atribuirla a que el vagón K se mueve respecto a K0 (es decir, «realmente»). En estas leyes generales de la naturaleza formuladas respecto a K tendrían que desempeñar un papel el módulo y la dirección de la velocidad del vagón. Sería de esperar, por ejemplo, que el tono de un tubo de órgano fuese distinto cuando su eje fuese paralelo a la dirección de marcha que cuando estuviese perpendicular. Ahora bien, la Tierra, debido a su movimiento orbital alrededor del Sol, es equiparable a un vagón que viajara a unos 30 km por segundo. Por consiguiente, caso de no ser válido el principio de relatividad, sería de esperar que la dirección instantánea del movimiento terrestre interviniera en las leyes de la naturaleza y que, por lo tanto, el comportamiento de los sistemas físicos dependiera de su orientación espacial respecto a la Tierra; porque, como la velocidad del movimiento de rotación terrestre varía de dirección en el transcurso del año, la Tierra no puede estar todo el año en reposo respecto al hipotético sistema K0. Pese al esmero que se ha puesto en detectar una tal anisotropía del espacio físico terrestre, es decir, una no equivalencia de las distintas direcciones, jamás ha podido ser observada. Lo cual es un argumento de peso a favor del principio de la relatividad.

6. El teorema de adición de velocidades según la Mecánica clásica

Supongamos que nuestro tan traído y llevado vagón de ferrocarril viaja con velocidad constante v por la línea, e imaginemos que por su interior camina un hombre en la dirección de marcha con velocidad w. ¿Con qué velocidad W avanza el hombre respecto a la vía al caminar? La única respuesta posible parece desprenderse de la siguiente consideración:

Si el hombre se quedara parado durante un segundo, avanzaría, respecto a la vía, un trecho v igual a la velocidad del vagón. Pero en ese segundo recorre además, respecto al vagón, y por tanto también respecto a la vía, un trecho w igual a la velocidad con que camina. Por consiguiente, en ese segundo avanza en total el trecho

W = v+ w

respecto a la vía. Más adelante veremos que este razonamiento, que expresa el teorema de adición de velocidades según la Mecánica clásica, es insostenible y que la ley que acabamos de escribir no es válida en realidad. Pero entre tanto edificaremos sobre su validez.

7. La aparente incompatibilidad de la ley de propagación de la luz con el principio de la relatividad

Apenas hay en la física una ley más sencilla que la de propagación de la luz en el espacio vacío. Cualquier escolar sabe (o cree saber) que esta propagación se produce en línea recta con una velocidad de c = 300.000 km/s. En cualquier caso, sabemos con gran exactitud que esta velocidad es la misma para todos los colores, porque si no fuera así, el mínimo de emisión en el eclipse de una estrella fija por su compañera oscura no se observaría simultáneamente para los diversos colores. A través de un razonamiento similar, relativo a observaciones de las estrellas dobles, el astrónomo holandés De Sitter consiguió también demostrar que la velocidad de propagación de la luz no puede depender de la velocidad del movimiento del cuerpo emisor. La hipótesis de que esta velocidad de propagación depende de la dirección «en el espacio» es de suyo improbable.

Supongamos, en resumen, que el escolar cree justificadamente en la sencilla ley de la constancia de la velocidad de la luz c (en el vacío). ¿Quién diría que esta ley tan simple ha sumido a los físicos más concienzudos en grandísimas dificultades conceptuales? Los problemas surgen del modo siguiente.

Como es natural, el proceso de la propagación de la luz, como cualquier otro, hay que referirlo a un cuerpo de referencia rígido (sistema de coordenadas). Volvemos a elegir como tal las vías del tren e imaginamos que el aire que había por encima de ellas lo hemos eliminado por bombeo. Supongamos que a lo largo del terraplén se emite un rayo de luz cuyo vértice, según lo anterior, se propaga con la velocidad c respecto a aquél. Nuestro vagón de ferrocarril sigue viajando con la velocidad v, en la misma dirección en que se propaga el rayo de luz, pero naturalmente mucho más despacio. Lo que nos interesa averiguar es la velocidad de propagación del rayo de luz respecto al vagón. Es fácil ver que el razonamiento del epígrafe anterior tiene aquí aplicación, pues el hombre que corre con respecto al vagón desempeña el papel del rayo de luz. En lugar de su velocidad W respecto al terraplén aparece aquí la velocidad de la luz respecto a éste; la velocidad w que buscamos, la de la luz respecto al vagón, es por tanto igual a:

w = c — v

Así pues, la velocidad de propagación del rayo de luz respecto al vagón resulta ser menor que c.

Ahora bien, este resultado atenta contra el principio de la relatividad expuesto en §5, porque, según este principio, la ley de propagación de la luz en el vacío, como cualquier otra ley general de la naturaleza, debería ser la misma si tomamos el vagón como cuerpo de referencia que si elegimos las vías, lo cual parece imposible según nuestro razonamiento. Si cualquier rayo de luz se propaga respecto al terraplén con la velocidad c, la ley de propagación respecto al vagón parece que tiene que ser, por eso mismo, otra distinta... en contradicción con el principio de relatividad.

A la vista del dilema parece ineludible abandonar, o bien el principio de relatividad, o bien la sencilla ley de la propagación de la luz en el vacío. El lector que haya seguido atentamente las consideraciones anteriores esperará seguramente que sea el principio de relatividad —que por su naturalidad y sencillez se impone a la mente como algo casi ineludible— el que se mantenga en pie, sustituyendo en cambio la ley de la propagación de la luz en el vacío por una ley más complicada y compatible con el principio de relatividad. Sin embargo, la evolución de la física teórica demostró que este camino era impracticable. Las innovadoras investigaciones teóricas de H. A. Lorentz sobre los procesos electrodinámicos y ópticos en cuerpos móviles demostraron que las experiencias en estos campos conducen con necesidad imperiosa a una teoría de los procesos electromagnéticos que tiene como consecuencia irrefutable la ley de la constancia de la luz en el vacío. Por eso, los teóricos de vanguardia se inclinaron más bien por prescindir del principio de relatividad, pese a no poder hallar ni un solo hecho experimental que lo contradijera.

Aquí es donde entró la teoría de la relatividad. Mediante un análisis de los conceptos de espacio y tiempo se vio que en realidad no existía ninguna incompatibilidad entre el principio de la relatividad y la ley de propagación de la luz, sino que, ateniéndose uno sistemáticamente a estas dos leyes, se llegaba a una teoría lógicamente impecable. Esta teoría, que para diferenciarla de su ampliación (comentada más adelante) llamamos «teoría de la relatividad especial», es la que expondremos a continuación en sus ideas fundamentales.
8. Sobre el concepto de tiempo en la Física

Un rayo ha caído en dos lugares muy distantes A y B de la vía. Yo añado la afirmación de que ambos impactos han ocurrido simultáneamente. Si ahora te pregunto, querido lector, si esta afirmación tiene o no sentido, me contestarás con un «sí» contundente. Pero si luego te importuno con el ruego de que me expliques con más precisión ese sentido, advertirás tras cierta reflexión que la respuesta no es tan sencilla como parece a primera vista.

Al cabo de algún tiempo quizá te acuda a la mente la siguiente respuesta: «El significado de la afirmación es claro de por sí y no necesita de ninguna aclaración; sin embargo, tendría que reflexionar un poco si se me exige determinar, mediante observaciones, si en un caso concreto los dos sucesos son o no simultáneos». Pero con esta respuesta no puedo darme por satisfecho, por la siguiente razón. Suponiendo que un experto meteorólogo hubiese hallado, mediante agudísimos razonamientos, que el rayo tiene que caer siempre simultáneamente en los lugares A y B, se plantearía el problema de comprobar si ese resultado teórico se corresponde o no con la realidad. Algo análogo ocurre en todas las proposiciones físicas en las que interviene el concepto de «simultáneo». Para el físico no existe el concepto mientras no se brinde la posibilidad de averiguar en un caso concreto si es verdadero o no. Hace falta, por tanto, una definición de simultaneidad que proporcione el método para decidir experimental-mente en el caso presente si los dos rayos han caído simultáneamente o no. Mientras no se cumpla este requisito, me estaré entregando como físico (¡y también como no físico!) a la ilusión de creer que puedo dar sentido a esa afirmación de la simultaneidad. (No sigas leyendo, querido lector, hasta concederme esto plenamente convencido.)

Tras algún tiempo de reflexión haces la siguiente propuesta para constatar la simultaneidad. Se mide el segmento de unión AB a lo largo de la vía y se coloca en su punto medio M a un observador provisto de un dispositivo (dos espejos formando 90° entre sí, por ejemplo) que le permite la visualización óptica simultánea de ambos lugares A y B. Si el observador percibe los dos rayos simultáneamente, entonces es que son simultáneos.

Aunque la propuesta me satisface mucho, sigo pensando que la cuestión no queda aclarada del todo, pues me siento empujado a hacer la siguiente objeción: «Tu definición sería necesariamente correcta si yo supiese ya que la luz que la percepción de los rayos transmite al observador en M se propaga con la misma velocidad en el segmentoque en el segmento

Sin embargo, la comprobación de este supuesto sólo sería posible si se dispusiera ya de los medios para la medición de tiempos. Parece, pues, que nos movemos en un círculo lógico».

Después de reflexionar otra vez, me lanzas con toda razón una mirada algo despectiva y me dices: «A pesar de todo, mantengo mi definición anterior, porque en realidad no presupone nada sobre la luz. A la definición de simultaneidad solamente hay que imponerle una condición, y es que en cualquier caso real permita tomar una decisión empírica acerca de la pertinencia o no pertinencia del concepto a definir. Que mi definición cubre este objetivo es innegable. Que la luz tarda el mismo tiempo en recorrer el caminoque el no es en realidad ningún supuesto previo ni hipótesis sobre la naturaleza física de la luz, sino una estipulación que puedo hacer a discreción para llegar a una definición de simultaneidad».

Está claro que esta definición se puede utilizar para dar sentido exacto al enunciado de simultaneidad, no sólo de dos sucesos, sino de un número arbitrario de ellos, sea cual fuere su posición con respecto al cuerpo de referencia6. Con ello se llega también a una definición del «tiempo» en la Física. Imaginemos, en efecto, que en los puntos A, B, C de la vía (sistema de coordenadas) existen relojes de idéntica constitución y dispuestos de tal manera que las posiciones de las manillas sean simultáneamente (en el sentido anterior) las mismas. Se entiende entonces por «tiempo» de un suceso la hora (posición de las manillas) marcada por aquel de esos relojes que está inmediatamente contiguo (espacialmente) al suceso. De este modo se le asigna a cada suceso un valor temporal que es esencialmente observable.

Esta definición entraña otra hipótesis física de cuya validez, en ausencia de razones empíricas en contra, no se podrá dudar. En efecto, se supone que todos los relojes marchan «igual de rápido» si tienen la misma constitución. Formulándolo exactamente: si dos relojes colocados en reposo en distintos lugares del cuerpo de referencia son puestos en hora de tal manera que la posición de las manillas del uno sea simultánea (en el sentido anterior) a la misma posición de las manillas del otro, entonces posiciones iguales de las manillas son en general simultáneas (en el sentido de la definición anterior).
9. La relatividad de la simultaneidad

Hasta ahora hemos referido nuestros razonamientos a un determinado cuerpo de referencia que hemos llamado «terraplén» o «vías». Supongamos que por los carriles viaja un tren muy largo, con velocidad constante v y en la dirección señalada en la Fig. 1. Las personas que viajan en este tren hallarán ventajoso utilizar el tren como cuerpo de referencia rígido (sistema de coordenadas) y referirán todos los sucesos al tren. Todo suceso que se produce a lo largo de la vía, se produce también en un punto determinado del tren. Incluso la definición de simultaneidad se puede dar exactamente igual con respecto al tren que respecto a las vías. Sin embargo, se plantea ahora la siguiente cuestión:



Dos sucesos (p. ej., los dos rayos A y B) que son simultáneos respecto al terraplén, ¿son también simultáneos respecto al tren? En seguida demostraremos que la respuesta tiene que ser negativa.

Cuando decimos que los rayos A y B son simultáneos respecto a las vías, queremos decir: los rayos de luz que salen de los lugares A y B se reúnen en el punto medio M del tramo de vía A-B. Ahora bien, los sucesos A y B se corresponden también con lugares A y B en el tren. Sea M' el punto medio del segmento A-B del tren en marcha. Este punto M' es cierto que en el instante de la caída de los rayos7 coincide con el punto M, pero, como se indica en la figura, se mueve hacia la derecha con la velocidad v del tren. Un observador que estuviera sentado en el tren en M', pero que no poseyera esta velocidad, permanecería constantemente en M, y los rayos de luz que parten de las chispas A y B lo alcanzarían simultáneamente, es decir, estos dos rayos de luz se reunirían precisamente en él. La realidad es, sin embargo, que (juzgando la situación desde el terraplén) este observador va al encuentro del rayo de luz que viene de B, huyendo en cambio del que avanza desde A. Por consiguiente, verá antes la luz que sale de B que la que sale de A. En resumidas cuentas, los observadores que utilizan el tren como cuerpo de referencia tienen que llegar a la conclusión de que la chispa eléctrica B ha caído antes que la A. Llegamos así a un resultado importante:

Sucesos que son simultáneos respecto al terraplén no lo son respecto al tren, y viceversa (relatividad de la simultaneidad). Cada cuerpo de referencia (sistema de coordenadas) tiene su tiempo especial; una localización temporal tiene sólo sentido cuando se indica el cuerpo de referencia al que remite.

Antes de la teoría de la relatividad, la Física suponía siempre implícitamente que el significado de los datos temporales era absoluto, es decir, independiente del estado de movimiento del cuerpo de referencia. Pero acabamos de ver que este supuesto es incompatible con la definición natural de simultaneidad; si prescindimos de él, desaparece el conflicto, expuesto en §7, entre la ley de la propagación de la luz y el principio de la relatividad.

En efecto, el conflicto proviene del razonamiento del epígrafe 6, que ahora resulta insostenible. Inferimos allí que el hombre que camina por el vagón y recorre el trecho w en un segundo, recorre ese mismo trecho también en un segundo respecto a las vías. Ahora bien, toda vez que, en virtud de las reflexiones 'anteriores, el tiempo que necesita un proceso con respecto al vagón no cabe igualarlo a la duración del mismo proceso juzgada desde el cuerpo de referencia del terraplén, tampoco se puede afirmar que el hombre, al caminar respecto a las vías, recorra el trecho w en un tiempo que —juzgado desde el terraplén— es igual a un segundo. Digamos de paso que el razonamiento de §6 descansa además en un segundo supuesto que, a la luz de una reflexión rigurosa, se revela arbitrario, lo cual no quita para que, antes de establecerse la teoría de la relatividad, fuese aceptado siempre (de modo implícito).

10. Sobre la relatividad del concepto de distancia espacial

Observamos dos lugares concretos del tren8 que viaja con velocidad v por la línea y nos preguntamos qué distancia hay entre ellos. Sabemos ya que para medir una distancia se necesita un cuerpo de referencia respecto al cual hacerlo. Lo más sencillo es utilizar el propio tren como cuerpo de referencia (sistema de coordenadas). Un observador que viaja en el tren mide la distancia, transportando en línea recta una regla sobre el suelo de los vagones, por ejemplo, hasta llegar desde uno de los puntos marcados al otro. El número que indica cuántas veces transportó la regla es entonces la distancia buscada.

Otra cosa es si se quiere medir la distancia desde la vía. Aquí se ofrece el método siguiente. Sean A' y B' los dos puntos del tren de cuya distancia se trata; estos dos puntos se mueven con velocidad v a lo largo de la vía. Preguntémonos primero por los puntos A y B de la vía por donde pasan A' y B' en un momento determinado t (juzgado desde la vía). En virtud de la definición de tiempo dada en §8, estos puntos A y B de la vía son determinables. A continuación se mide la distancia entre A y B transportando repetidamente el metro a lo largo de la vía.

A priori no está dicho que esta segunda medición tenga que proporcionar el mismo resultado que la primera. La longitud del tren, medida desde la vía, puede ser distinta que medida desde el propio tren. Esta circunstancia se traduce en una segunda objeción que oponer al razonamiento, aparentemente tan meridiano, de §6. Pues si el hombre en el vagón recorre en una unidad de tiempo el trecho w medido desde el tren, este trecho, medido desde la vía, no tiene por qué ser igual a w.

11. La transformación de Lorentz

Las consideraciones hechas en los tres últimos epígrafes nos muestran que la aparente incompatibilidad de la ley de propagación de la luz con el principio de relatividad en §7 está deducida a través de un razonamiento que tomaba a préstamo de la Mecánica clásica dos hipótesis injustificadas; estas hipótesis son:

  1. El intervalo temporal entre dos sucesos es independiente del estado de movimiento del cuerpo de referencia.

  2. El intervalo espacial entre dos puntos de un cuerpo rígido es independiente del estado de movimiento del cuerpo de referencia.


Si eliminamos estas dos hipótesis, desaparece el dilema de §7, porque el teorema de adición de velocidades deducido en §6 pierde su validez. Ante nosotros surge la posibilidad de que la ley de la propagación de la luz en el vacío sea compatible con el principio de relatividad. Llegamos así a la pregunta: ¿cómo hay que modificar el razonamiento de §6 para eliminar la aparente contradicción entre estos dos resultados fundamentales de la experiencia? Esta cuestión conduce a otra de índole general. En el razonamiento de §6 aparecen lugares y tiempos con relación al tren y con relación a las vías. ¿Cómo se hallan el lugar y el tiempo de un suceso con relación al tren cuando se conocen el lugar y el tiempo del suceso con respecto a las vías? ¿Esta pregunta tiene alguna respuesta de acuerdo con la cual la ley de la propagación en el vacío no contradiga al principio de relatividad? O expresado de otro modo: ¿cabe hallar alguna relación entre las posiciones y tiempos de los distintos sucesos con relación a ambos cuerpos de referencia, de manera que todo rayo de luz tenga la velocidad de propagación c respecto a las vías y respecto al tren? Esta pregunta conduce a una respuesta muy determinada y afirmativa, a una ley de transformación muy precisa para las magnitudes espacio-temporales de un suceso al pasar de un cuerpo de referencia a otro.

Antes de entrar en ello, intercalemos la siguiente consideración. Hasta ahora solamente hemos hablado de sucesos que se producían a lo largo de la vía, la cual desempeñaba la función matemática de una recta. Pero, siguiendo lo indicado en el epígrafe 2, cabe imaginar que este cuerpo de referencia se prolonga hacia los lados y hacia arriba por medio de un andamiaje de varillas, de manera que cualquier suceso, ocurra donde ocurra, puede localizarse respecto a ese andamiaje. Análogamente, es posible imaginar que el tren que viaja con velocidad v se prolonga por todo el espacio, de manera que cualquier suceso, por lejano que esté, también pueda localizarse respecto al segundo andamio. Sin incurrir en defecto teórico, podemos prescindir del hecho de que en realidad esos andamios se destrozarían uno contra el otro debido a la impenetrabilidad de los cuerpos sólidos. En cada uno de estos andamios imaginamos que se erigen tres paredes mutuamente perpendiculares que denominamos «planos coordenados» («sistema de coordenadas»). Al terraplén le corresponde entonces un sistema de coordenadas K, y al tren otro K'. Cualquier suceso, dondequiera que ocurra, viene fijado espacialmente respecto a K por las tres perpendiculares x, y, z a los planos coordenados, y temporalmente por un valor t. Ese mismo suceso viene fijado espacio-temporalmente respecto a K' por valores correspondientes x', y', z', t', que, como es natural, no coinciden con x, y, z, t. Ya explicamos antes con detalle cómo interpretar estas magnitudes como resultados de mediciones físicas.

Es evidente que el problema que tenemos planteado se puede formular exactamente de la manera siguiente: Dadas las cantidades x, y, z, t de un suceso respecto a K, ¿cuáles son los valores x',y',z',t' del mismo suceso respecto a K' ? Las relaciones hay que elegirlas de tal modo que satisfagan la ley de propagación de la luz en el vacío para uno y el mismo rayo de luz (y además para cualquier rayo de luz) respecto a K y K'. Para la orientación espacial relativa indicada en el dibujo de la figura 2, el problema queda resuelto por las ecuaciones:




Este sistema de ecuaciones se designa con el nombre de «transformación de Lorentz9».



Ahora bien, si en lugar de la ley de propagación de la luz hubiésemos tomado como base los supuestos implícitos en la vieja mecánica, relativos al carácter absoluto de los tiempos y las longitudes, en vez de las anteriores ecuaciones de transformación habríamos obtenido estas otras:

x' = x — vt

y' = y

z' = z

t' = t,
sistema que a menudo se denomina «transformación de Galileo». La transformación de Galileo se obtiene de la de Lorentz igualando en ésta la velocidad de la luz c a un valor infinitamente grande.

El siguiente ejemplo muestra claramente que, según la transformación de Lorentz, la ley de propagación de la luz en el vacío se cumple tanto respecto al cuerpo de referencia K como respecto al cuerpo de referencia K'. Supongamos que se envía una señal luminosa a lo largo del eje x positivo, propagándose la excitación luminosa según la ecuación

x = ct,

es decir, con velocidad c. De acuerdo con las ecuaciones de la transformación de Lorentz, esta sencilla relación entre x y t determina una relación entre x' y t'. En efecto, sustituyendo x por el valor ct en las ecuaciones primera y cuarta de la transformación de Lorentz obtenemos:

de donde, por división, resulta inmediatamente

x' = ct'.
La propagación de la luz, referida al sistema K', se produce según esta ecuación. Se comprueba, por tanto, que la velocidad de propagación es también igual a c respecto al cuerpo de referencia K'; y análogamente para rayos de luz que se propaguen en cualquier otra dirección. Lo cual, naturalmente, no es de extrañar, porque las ecuaciones de la transformación de Lorentz están derivadas con este criterio.

12. El comportamiento de reglas y relojes móviles

Coloco una regla de un metro sobre el eje x' de K', de manera que un extremo coincida con el punto x' = 0 y el otro con el punto x' = 1. ¿Cuál es la longitud de la regla respecto al sistema K? Para averiguarlo podemos determinar las posiciones de ambos extremos respecto a K en un momento determinado t. De la primera ecuación de la transformación de Lorentz, para t = 0, se obtiene para estos dos puntos:



estos dos puntos distan entre sí




Ahora bien, el metro se mueve respecto a K con la velocidad v, de donde se deduce que la longitud de una regla rígida de un metro que se mueve con velocidad v en el sentido de su longitud es de





metros. La regla rígida en movimiento es

más corta que la misma regla cuando está en estado de reposo, y es tanto más corta cuando más rápidamente se mueva. Para la velocidad v = c sería



para velocidades aún mayores la raíz se haría imaginaria. De aquí inferimos que en la teoría de la relatividad la velocidad c desempeña el papel de una velocidad límite que no puede alcanzar ni sobrepasar ningún cuerpo real.

Añadamos que este papel de la velocidad c como velocidad límite se sigue de las propias ecuaciones de la transformación de Lorentz, porque éstas pierden todo sentido cuando v se elige mayor que c.

Si hubiésemos procedido a la inversa, considerando un metro que se halla en reposo respecto a K sobre el eje x, habríamos comprobado que en relación a K' tiene la longitud de




lo cual está totalmente de acuerdo con el principio de la relatividad, en el cual hemos basado nuestras consideraciones.

A priori es evidente que las ecuaciones de transformación tienen algo que decir sobre el comportamiento físico de reglas y relojes, porque las cantidades x, y, z, t no son otra cosa que resultados de medidas obtenidas con relojes y reglas. Si hubiésemos tomado como base la transformación de Galileo, no habríamos obtenido un acortamiento de longitudes como consecuencia del movimiento.

Imaginemos ahora un reloj con segundero que reposa constantemente en el origen (x' = 0) de K'. Sean t' = 0 y t' = 1 dos señales sucesivas de este reloj. Para estos dos tics, las ecuaciones primera y cuarta de la transformación de Lorentz darán:
  1   2   3   4   5   6   7   8   9

Añadir el documento a tu blog o sitio web

similar:

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTítulo Original: Confessions (1996)

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTítulo Original: Unnatural Exposure

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTítulo original IL pendolo di Foucault

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTitulo del original: The Devils of Loudun

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconLecciones que aprendí en mi asamblea por un discípulo viejo Título...

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTítulo Original: The sheikh's virgin princess (2007)
«real» en el comportamiento de aquella mujer y de ninguna manera se iba a convertir en su esposa

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconDune 04 Frank Herbert (1981) Título Original: God Emperor of Dune...

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTitulo I. Principios generales titulo II. Titulares de los derechos...

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTitulo I. Principios generales titulo II. Titulares de los derechos...

Título original: Über die spezielte und allgemeine Relatiuitátstheorie iconTítulo original: The Kite Runner
«hogar». De repente, la voz de Hassan me susurró al oído: «Por ti lo haría mil veces más.» Hassan, el volador de cometas de labio...






© 2015
contactos
ley.exam-10.com